Attenuation of experimental aortic aneurysm formation in P-selectin knockout mice.
نویسندگان
چکیده
The aim of this study was to determine the role of P-selectin, an adhesion molecule found on the surface of activated platelets and endothelial cells during experimental aortic aneurysm formation. Infrarenal abdominal aortas of C57 black wild-type (WT) mice and P-selectin knockout (PKO) mice were measured in situ and then perfused with porcine pancreatic elastase (0.332 U/mL). Whole blood was drawn from the tail artery on day 2 pre-perfusion to determine total and differential white blood cell (WBC) counts. On day 14 postperfusion, aortic diameters (AD) of WT mice (N = 19) and PKO mice (N = 9) were measured. An aortic aneurysm was defined as a 100% or greater increase in AD from pre-perfusion measurement. Immunohistochemistry, including H&E, trichrome and von Gieson staining, was performed on harvested aortic tissue. Statistical analysis was performed by t-test and Fisher's exact test. There were no significant differences in peripheral leukocyte counts at baseline between the two groups. WT mice had significantly larger AD compared to PKO mice at day 14 postperfusion (116 % vs. 38 %, P < 0.001). Aortic aneurysm penetrance was 52% in WT mice, while 0% (P = 0.01) of PKO mice formed aneurysms. On histologic examination, WT mouse aortas were associated with a significant inflammatory response and degradation of elastin and collagen fibers, while PKO mouse aortas lacked signs of inflammation or vessel wall injury. P-selectin deficiency attenuates aneurysm formation in the elastase aortic perfusion model. This was associated with a blunting of the inflammatory response and preserved vessel wall intergrity following elastase perfusion in the P-selectin knockout mice. Further investigation to elucidate the independent contributions of endothelial cell and platelet P-selectin in experimental aortic aneurysm formation is required.
منابع مشابه
L-selectin-mediated neutrophil recruitment in experimental rodent aneurysm formation.
BACKGROUND This investigation tested the hypothesis that L-selectin is important in experimental abdominal aortic aneurysm (AAA) formation in rodents. METHODS AND RESULTS Rat abdominal aortas were perfused with saline (control) or porcine pancreatic elastase and studied on postperfusion days 1, 2, 4, 7, and 14 (n=5 per treatment group per day). Neutrophil (polymorphonucleur leukocyte, PMN) an...
متن کاملInhibition of interleukin-1β decreases aneurysm formation and progression in a novel model of thoracic aortic aneurysms.
BACKGROUND Thoracic aortic aneurysms (TAAs) are common, but experimental TAA models are limited and the role of interleukin-1β (IL-1β) is undetermined. METHODS AND RESULTS IL-1β protein was measured in human TAAs and control aortas, and IL-1β protein was increased ≈20-fold in human TAAs. To develop an experimental model of TAAs, 8- to 10-week-old male C57Bl/6 mice (wild type [WT]) underwent t...
متن کامل17 Beta-estradiol attenuates development of angiotensin II-induced aortic abdominal aneurysm in apolipoprotein E-deficient mice.
OBJECTIVE Angiotensin II (Ang II) promotes vascular inflammation, accelerates atherosclerosis, and induces abdominal aortic aneurysm (AAA). These changes were associated with activation of nuclear factor (NF)-kappaB-mediated induction of proinflammatory genes. The incidence of AAA in this model was higher in male than in female mice, and the vascular effects of estrogen may be associated with a...
متن کاملChemokine (C-X-C motif) receptor 4 blockade by AMD3100 inhibits experimental abdominal aortic aneurysm expansion through anti-inflammatory effects.
OBJECTIVE Inflammation plays a critical role in the development of abdominal aortic aneurysms (AAAs). Because stromal cell-derived factor 1 (SDF-1) is known for its ability to attract inflammatory cells, we investigated whether SDF-1/chemokine (C-X-C motif) receptor 4 (CXCR4) axis is expressed in aneurysmal aortic wall and plays a role in AAA physiopathology and asked whether its blockade modul...
متن کاملHypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial nitric oxide synthase double knockout mice.
BACKGROUND Apolipoprotein E (apoE)/endothelial nitric oxide synthase (eNOS) double knockout (DKO) mice demonstrate accelerated atherosclerosis and develop abdominal aortic aneurysms and aortic dissection, suggesting a role for eNOS in suppressing atherogenesis. To test whether accelerated atherosclerosis and aortic aneurysms were due to hypertension, we administered hydralazine to male apoE/eNO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1085 شماره
صفحات -
تاریخ انتشار 2006